Δ Gooch \& Housego

Compact Low Power RF Driver: For Acousto-optic Q-Switch or Modulator

QCXXX-YYDC-ZZZ-AAV

Former Model Numbers:
R390XX-YYDMZZZ \& MQCOXX-YYDCZZZ-AAV

The QCXXX-YYDC-ZZZ-AAV module is a compact Low Power RF Driver, designed to drive an AO Q-Switch or AO Modulator. The unit has two digital modulation inputs: Fixed and Variable. These controls allow the customer to issue a pulse command of a "Fixed" pulse width, the duration determined by the Driver's pulse width control, settable by the customer, or issue a "Variable" pulse command, the duration determined by the input signal's pulse width. The output power is controlled by the analog input, where the mode of operation is defined by ZZZ = A05 normal analog mode, or R05 analog switched to full RF mode or a triggered RF Ramp Down mode where ZZZ = FPS first pulse suppression mode or PPK pre-pulse kill mode. Other variations of these modes are also available. The choices of Frequency (XXX), Output Power (YY), and Power Control (ZZZ) option are "Factory Set" when ordered. This driver has a Zero Crossing function where the output pulse can be synchronized to the zero crossing point of the RF Energy. When enabled the pulse to pulse stability is improved.

This product conforms to the requirements of the European Union Directive 2011/65/EU of the European Parliament and of the Council on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment.

Key Features:

24, 27.12, 40.68, 68, 80, or 110 MHz RF Frequency (XXX)

- 0.01\% Quartz Stabilized
- Up to 24 watts RF power output (YY)
- Two TTL Digital Modulation Inputs: fixed and variable pulse width.
- Up to 1 MHz pulse rate in Q-Switch applications.
- Up to 10 MHz pulse rate in pulse picking applications
Analog Modulation or Triggered RF Ramp Down Mode (ZZZ)
Synchronization to RF by 'Zero cross' Fault Protection on Low Power, High Power, and High VSWR
- Operates on 12, 15 or 24 VDC (AAV) (Factory set)

Applications:

- Powering an Acousto-Optic Q-Switch used to spoil the " Q " of a CW laser so as to output an intense pulse of light.
- Powering an Acousto-Optic Modulator to pick pulses out of an optical pulse train

PARAMETER:

OPERATING TEMPERATURE:

Contact Cooled

MAXIMUM RATINGS:

Supply Voltage:
Power Output:
Storage Temperature:

RF POWER (watts)

	Frequency (MHz)	24.00	27.12	40.68	68	80
Supply Voltage (V)		10	10	10	10	10
12	24	24	24	20	20	10
15	24	24	24	24	24	10
24						
CONNECTORS AND MECHANICAL:						

RF Output Connector:
Power and Control Connector: Mating Connector:
Pinout:
1 SYNC 2 FPS TRIGGER
3 MOD IN FIXED
4 GROUND
5 MOD IN VARIABLE
6 MOD IN ANALOG

SMA Female
Molex 0430451221
Molex 0430251200 with 0430300008 crimp terminals

ADJUSTMENTS:
RF Power Level Adjustment
LP - Low Power Set Point

HP - High Power Set Point
High VSWR Set Point

Pulse Width

Adjusts the output RF Power - clockwise increases power output.
Adjusts the minimum power threshold. The LP Fault output goes LOW if the output power less than this level.
Adjusts the maximum power threshold The HP Fault output goes LOW if the output power is greater than this level
Adjusts the module's tolerance for a mismatched load connected to RF Out. If a mismatch is detected, the HVSWR Fault output goes LOW, the status LED will change to YELLOW, and the driver will cease output until reset by momentarily entering stand by mode.

Adjusts the length of time the driver outputs no RF energy after receiving a Fixed Input trigger. $1 \mu \mathrm{~s}$ to $20 \mu \mathrm{~s}$.

The following adjustments are used on units configured with FPS or PPK:

FPS Start
FPS Slope

FPS Window

STATUS INDICATOR:

Red	Normal Operation
Green	Stand By Mode
Yellow	Fault Condition

Normal Operation
Stand By Mode
Fault Condition

Adjusts the initial power level of the first pulse.
Adjusts how quickly the RF pulses return to their normal level after the FPS has been triggered. $20 \mu \mathrm{~s}$ to $300 \mu \mathrm{~s}$.
Adjusts the duration of the suppression pulse cycle. $20 \mu \mathrm{~s}$ to $300 \mu \mathrm{~s}$

MECHANICAL DIMENSIONS:

Dimensions in inches and [mm]

FIGURE 2
FIRST PULSE SUPPRESSION (FPS) OPERATING MODE CONTROL DIAGRAM

Normal Trigger Polarity shown. Invert signals A, B, and C for NEG operation.

FIGURE 3
PRE PULSE KILL (PPK) OPERATING MODE CONTROL DIAGRAM

Normal Trigger Polarity shown. Invert signals A, B, and C for NEG operation.

FIGURE 4
ANALOG CONTROL (R05) SWITCHED TO RF OPERATING MODE CONTROL DIAGRAM

Normal Trigger Polarity shown. Invert signals A and B for NEG operation.

FIGURE 5
ANALOG CONTROL (A05) OPERATING MODE CONTROL DIAGRAM

Normal Trigger Polarity shown. Invert signals A and B for NEG operation.

FIGURE 6
ANALOG CONTROL (M05) WITH AOM COMPATIBLE OUTPUT CONTROL DIAGRAM

Normal Trigger Polarity shown. Invert signals A and B for NEG operation.
Page 9 of 10

Ordering Codes:

Example: QC027-20DC-A05-15V
A 27 MHz RF Driver with two TTL Digital Modulation inputs (fixed and variable pulse width) and an analog input (A05) which enables control of the RF output power. Designed to Drive an AO Q-Switch requiring 20 watts RF Power or less. Delivered as a RoHS compliant, contact cooled OEM Module.

Technical Assistance \& Customization

Our Engineering and Sales team are available to discuss your requirements and will assist you in selecting the most appropriate acousto-optic Q-Switch/ Driver combination for your application.

