MODEL NUMBER:

# 64020-200-10ADSDFS-A-2 <br> SPECIFICATIONS 

## Document Number: 56A19196

## Dual Digital Frequency Synthesizers in a rack mountable box with independent analog and digital modulation inputs with each synthesizer having a 10 watt RF output.

## PARAMETER

Number of Frequency Synthesizer per box:
Bandwidth:
Clock Frequency:
Step Size:
Frequency Settling Time:
Power Out:
(2x)
Harmonic Distortion:

Analog Modulation: (2x)
Digital Modulation: (2x)

Rise and Fall Time:
Extinction Ratio:
Digital:
Analog:
Applied Power:

Outline Drawing

## MAXIMUM RATINGS:

Ambient Temperature:
RF Output:

## INPUT / OUTPUT CONNECTIONS:

"Frequency Select" Control: (2X)

Digital Modulation Input: (2X)
Analog Modulation Input: (2X)
Reference Output: (2X)
RF Output: (2X)
Power Input:
56A19196.doc Approved for release W. Seale 1/30/07

## SPECIFICATION

2 - Each synthesizer having an independent clock
20 - 200 MHz typical
1000 MHz
$<1 \mathrm{~Hz}$ with 30 Bits input
250 ns maximum
10 watts typical
-20 dBc maximum
-15 dBc maximum
0 to +1 volt Analog, +1 volt $=$ Full RF power output.
TTL levels
TTL High = Full RF output power
TTL Low $=$ Minímum RF output power
No Signal $=$ Full RF output power (pulled high internally)
20 ns

30 dB minimum
40 dB minimum
100 TO 240 VAC 50 to 60 Hz
(a) 3 Amps Maximum

53D4315
$40^{\circ} \mathrm{C}$
No DC Feedback

TTL 30 bit binary word, Digital Modulation Input, Reset, and a Latch control input through the 37 pin D sub connector.
See page 2 for pinout.
Pin 35 of the 37 pin sub D female connector
BNC Female
SMB Male
SMA Female connector
EAC309 Receptacle
1 of 3

## CONTROLS:

"ON / OFF" Switch
"CW / NORMAL" Switch
"MANUAL / AUTO" Switch

Manual Mode "FREQUENCY SELECT"

Applies AC Power to the unit.
$\mathrm{CW}=\mathrm{RF}$ on at set power level
NORMAL = RF controlled from "MOD IN" port
0 to 1 volt Analog, 1 volt = Full RF output.
MANUAL = frequency set from HEX switches
AUTO = frequency set from "FREQUENCY SELECT" 37 pin D sub connector.
8 "Hex" selector switches: LSB to MSB - Right To Left.

## PIN OUT: 37-PIN MALE D-SUB CONNECTOR:

| $\underline{\text { PIN }}$ |  | PIN |  |
| :---: | :---: | :---: | :---: |
| 1 | $\mathrm{FS}_{0} \quad$ LSB | 20 | FS ${ }_{1}$ |
| 2 | $\mathrm{FS}_{2}$ | 21 | $\mathrm{FS}_{3}$ |
| 3 | $\mathrm{FS}_{4}$ | 22 | FS 5 |
| 4 | $\mathrm{FS}_{6}$ | 23 | $\mathrm{FS}_{7}$ |
| 5 | $\mathrm{FS}_{8}$ | 24 | $\mathrm{FS}_{9}$ |
| 6 | $\mathrm{FS}_{10}$ | 25 | $\mathrm{FS}_{11}$ |
| 7 | $\mathrm{FS}_{12}$ | 26 | $\mathrm{FS}_{13}$ |
| 8 | $\mathrm{FS}_{14}$ | 27 | $\mathrm{FS}_{15}$ |
| 9 | $\mathrm{FS}_{16}$ | 28 | $\mathrm{FS}_{17}$ |
| 10 | $\mathrm{FS}_{18}$ | 29 | FS ${ }_{19}$ |
| 11 | $\mathrm{FS}_{20}$ | 30 | $\mathrm{FS}_{21}$ |
| 12 | $\mathrm{FS}_{22}$ | 31 | $\mathrm{FS}_{23}$ |
| 13 | $\mathrm{FS}_{24}$ | 32 | $\mathrm{FS}_{25}$ |
| 14 | $\mathrm{FS}_{26}$ | 33 | $\mathrm{FS}_{27}$ |
| 15 | $\mathrm{FS}_{28}$ | 34 | $\mathrm{FS}_{29}$ |
| 16 | Latch (Active High) | 35 | Digita |
| 17 | Master Reset (Active High) | 36 | N/C |
| 18 | N/C | 37 | N/C |
| 19 | Ground |  |  |

$$
\text { Control Word } \mathrm{K}_{10}=\frac{\operatorname{Fout}(\mathrm{Hz})\left(2^{31}\right)}{\operatorname{FosC}(\mathrm{Hz})} \text { in Decimal notation }
$$

## CONTROL WORD CALCULATIONS

The output frequency and step size is a function of the clock rate and the "FREQUENCY SELECT" data. The output frequency can be calculated from the formula:

$$
\mathrm{f}_{\text {out }}=\frac{\left(\mathrm{f}_{\mathrm{c}}\right)\left(\mathrm{k}_{10}\right)}{2^{\mathrm{n}}}
$$

Where: $\mathrm{f}_{\mathrm{c}}=$ clock frequency in Hz
$\mathrm{k}_{10}=$ input word in decimal notation
$\mathrm{n}=31$ *See note below.

The minimum output frequency and step size are given by:

$$
\mathrm{f}_{\min }=\frac{\mathrm{f}_{\mathrm{c}}}{2^{\mathrm{n}}}
$$

An example of setting the frequency:
Clock frequency $=1000 \times 10^{6} \mathrm{~Hz}$
Desired output frequency $=30.00 \times 10^{6} \mathrm{~Hz}$

$$
\mathrm{K}_{10}=\frac{\operatorname{fout}(\mathrm{Hzz})\left(2^{31}\right)}{\operatorname{fosc}(\mathrm{Hz})}
$$

$$
\mathrm{K}_{10}=\frac{30 \times 10^{6}\left(2^{31}\right)}{\left(1000 \times 10^{6}\right)}
$$

$\mathrm{K}_{10}=64424509.44$ Decimal

## Convert $\mathrm{K}_{10}$ to HEX

$\mathrm{K}_{\text {HEX }}=3 \mathrm{D} 70 \mathrm{~A} 3 \mathrm{D} \rightarrow$ 03D70A3D $\quad \begin{aligned} & \text {-Setting for front panel "HEX" switches } \\ & \text { NOTE: The switches on the front panel }\end{aligned}$ of the driver are LSB to MSB - right to left.
Convert $\mathrm{K}_{\text {HEX }}$ to Binary $\quad \vee$ LSB - pin1

$$
\mathrm{K}_{\mathrm{B}}=\frac{0000}{\wedge} 11110101110000101000111101 \quad \begin{aligned}
& \text {-Setting for binary word input to back } \\
& \text { panel "FREQUENCY SELECT" } 37 \text { pin }
\end{aligned}
$$

D-sub connector
*Note: This system only uses 30 bits to set the frequency output from the driver. The accumulator inside the chip is 31 bit, so use $2^{31}$ in your calculations for precision.

The LATCH function is TTL active HIGH and is located on pin 16. The LATCH will hold the frequency at the last word sent to the driver prior to setting the latch high.

Master RESET is a TTL active HIGH and resets the accumulator to zero, ie, no frequency output, when a TTL HIGH is applied to pin 17 . This is pulled LOW via. a $1 \mathrm{~K} \Omega$ resistor.

